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Chebyshev Approximation of (1 + 2x)exp(x2)erfc x 
inO 6x < co 

By M. M. Shepherd and J. G. Laframboise 

Abstract. We have obtained a single Chebyshev expansion of the function f(x)= 
(1 + 2x)exp(x2)erfc x in 0 < x < oo, accurate to 22 decimal digits. The presence of the 
factors (1 + 2x)exp(x2) causes f(x) to be of order unity throughout this range, ensuring that 
the use of f(x) for approximating erfc x will give uniform relative accuracy for all values of 
x. 

I. Introduction. The functions erfc x = (2/ V- )f exp(-t2) dt and exp(x2)erfc x 
occur frequently in kinetic theory of gases and related subjects. Calculation of 
these functions using the identity erfc x = 1 - erf x, together with available ap- 
proximations [1] for erf x, usually results in large relative errors for large x because 
erf x -- 1 as x -x o. To overcome this difficulty, Clenshaw [2], Luke [3], [4], and 
Schonfelder [5] have presented Chebyshev approximations in which the range 
0 < x < xo is split into two ranges 0 < x < c and c < x < x, with erf x being 
Chebyshev-approximated in 0 < x < c, and x exp(x2)erfc x being Chebyshev- 
approximated in c < x < cx. Clenshaw [2] uses c = 4, 33 terms for x < 4 and 18 
terms for x > 4, and obtains an accuracy of twenty decimal places (20D). Corre- 
sponding figures for Luke [3], [4] and Schonfelder [5] are c = 3, 25 and 22 terms, 
and 20D; and c = 2, 27 and 43 terms, and 30D. These authors use various 
transformations t(x) to map c < x < xo into -1 < t < 1. Use of the identity 
erfc(-x) = 2 - erfc x eliminates the need to approximate erfc x for negative x. 

Schonfelder [5] has also presented a single 43-term Chebyshev expansion of 
exp(x2)erfc x for the entire interval 0 < x < x, using a relation of the form 
t = (x - k)/(x + k) to map this interval into -1 S t < 1. Oldham [6] has pre- 
sented a simple approximation of V7x exp(x2)erfc x, having a maximum relative 
error of one part in 7000 and suitable for hand calculation. 

Whenever a function to be Chebyshev-approximated has a zero within its 
interval of definition or at either end of it, such an approximation is likely to give 
large relative errors near such a zero because the usual procedures for calculating 
Chebyshev coefficients minimize maximum absolute error. Accordingly, it is ad- 
vantageous to multiply erfc x by factors which yield a product of order unity for all 
x in (0, ox) and then to Chebyshev-approximate this product function, because one 
will then obtain good uniformity of relative as well as absolute error. Our chosen 
function, f(x) = (1 + 2x)exp(x2)erfc x, satisfies this criterion. It has limiting values 
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of 1 and 2/ V-;T 1.13 at x = 0 and x -x o, respectively. In comparison, Schon- 
felder's function exp(x2)erfc x approaches 0 as x -- oo. Furthermore, our choice 
contains no irrational coefficients, in contrast with the more obvious choice 
(1 + \f7x)exp(x2)erfc x, which -- 1 at x = 0 and x oo. A graph of f(x) appears 
in Figure 1. 

-/ 0 / 
FIGURE 1 

Graph of the function F(t) defined by the relation f(x) = (1 + 2x)exp(x2)erfc x 

together with the mapping t = (x - 3.75)/ (x + 3.75). 

We have used the same transformation as that of Schonfelder [5], i.e. t= 
(x - k)/(x + k) with k = 3.75, to map 0 S x < oo into -1 < t < 1. Tests of 
various k values for our f(x) yielded results similar to his, namely that this value 
gives near-optimum convergence of the resulting Chebyshev series over the preci- 
sion range of greatest interest, i.e. 8D to 18D. Our calculations were done in IBM 
quadruple precision, which yields a machine precision of 34D. 

II. Calculation of Chebyshev Coefficients. We have used the usual [7] form of an 
mth-order Chebyshev expansion. Thus, the Chebyshev polynomials Tj(t) are given 
by 

(1) Tj(t) = cos(j arc cos t); j = 0, 1, 2, . 

The above-mentioned f(x) and transformation from x to t define a function F(t) 
which is expanded as follows: 

m 

(2) F(t) = E CjT(t), 
j=O 

where 
M 

1: Ff tk) Tj( tk) 

(3) c = k=O (3) =~~~~~~~C 
IITj__ 

___ __ 
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(4) tk = cos ( m+l2) k = 0, 1 2,.. 

(5) 11T0112 = m + 1; I11fl2 = (m + 1) for i > 0. 

In order to calculate the required values of f(x), we note that the Taylor 
expansion 

(6) erfc x = 1- t - . - . ) 
can be rearranged [8] into the form 

(7) exp( 2)erfc x = exp(x - 2x 
/ V_7 n=o I 3 5 (2n + 1)' 

the use of which is less sensitive to roundoff errors. 
The asymptotic expansion 

(8) exp(x2)erfc x = I - 2X2 + - + ) 

is of limited use when x is large. The continued-fraction expansion 
1 2 3 

(9) Vx exp(x2)erfc x = + 2X2 + 2X2 + 2X2 + * 

(Perron [9]) yields better precision. Perron [10] gives the following algorithm for use 
of (9). 

We define 

A_ = 1, AO= bo 
B-1 = 0, Bo= 1; 

(10) ai = i/ (2x2), bi =1 for i = 0, 1, 2, 3, .. 

a1j a2+ajA 
bo + 

lb,+ 
+ 

Ibn Bn 

Then An and Bn are given recursively by the relations 

An= bnAn- + anAn-2 L 2 3 
(11) Bn =bnBn- I + anBn-2 j n=1, 2, 3,.... 

At smaller values of x, the convergence of (9) becomes slower. To overcome this, 
we have used double Aitken 62 extrapolation (Burden et al. [11, pp. 56-57]) as 
follows. If yi is the approximation obtained by taking j terms of (9), then the 
sequences of numbers 

(12) y=YJ(yJy )/(yJ2y1 + Yj-2), 

j - (YJ yJ_)2/ (yj'-2y>_ +Y>2) 

converge progressively faster to (9). Use of (12) with (9)-(1 1) improved the fit of 
the Chebyshev approximation by about five orders of magnitude. 

We have used (7) for x < 2.83 and (9)-(12) for x > 2.83. This yielded values of 
f(x) accurate to at least 23D for all x. The resulting Chebyshev coefficients, 



252 M. M. SHEPHERD AND J. G. LAFRAMBOISE 

generated by (3)-(5), are shown in Table 1. Use of these in (2) gives an approxima- 
tion which reproduces f(x) to at least 22D for all x. Schonfelder [5] generates 
Chebyshev coefficients using a different method [12], [13] in which an expression 
equivalent to (2) is substituted into a linear differential equation satisfied by the 
given function. Together with the boundary conditions satisfied by the same 
function, this procedure generates an infinite set of simultaneous linear equations 
for the cj, a truncated version of which is then solved. 

TABLE 1 

Y=( I+2X) *EXP(X*X)*tRFC(X) X=(O, INF) 
T=(X-K)/(XKK) (= 3.75 

ORD C(N) 
0 0.11 757893456740175408CQ+01 
1 -O.4 590054580646477331Q-02 
2 -0.b02491333665179155840-01 
3 0.59209939998l91890498Q-O0 
4 -00.266586684353057522 770-01 
5 0.90749976707052650940-02 
6 -0.2413163540417608191C-02 
7 0. 490 775836525808632Q-03 
8 -O .691 69T330250120b4Q-04 
9 0.4139027986073010Q-05 

10 O.7743383066198490-06 
11 -O.218864010492344Q-06 
12 0 o. 107649994656 71 G-07 
13 0.45219598112 I b Q- 08 
14 -O -.775440020883 c 09 
15 -0.631 808834 09Q- 10 
16 0.286879501 090-10 
17 0.194556685Q-12 
18 -0.9654696750-12 
19 0.32525481Q-13 
20 O.3347811 9Q-13 
21 - 0. 18645630- 14 
22 -O.12507950-14 
23 0.141 820-16 
24 0.o506 Q Q- 16 
25 -O.22.370-17 
26 -0.21 67Q-17 
27 0.27 Q- 19 
28 0.97Q- 19 
29 0.3 Q-20 
30 -O .4Q-20 
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